Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 886
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673988

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Hypercapnia , Parkinson Disease , Receptor, Serotonin, 5-HT1A , Receptor, Serotonin, 5-HT2A , Animals , Male , Rats , Disease Models, Animal , Dopamine/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Norepinephrine/metabolism , Norepinephrine/pharmacology , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Respiration/drug effects , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
2.
J Med Chem ; 67(9): 7224-7244, 2024 May 09.
Article En | MEDLINE | ID: mdl-38648420

Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.


Piperidines , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Animals , Humans , Rats , Drug Discovery , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Structure-Activity Relationship , Lysergic Acid Diethylamide/chemical synthesis , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/pharmacology
3.
J Med Chem ; 67(8): 6144-6188, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38593423

Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT2 receptor agonist. CYB210010 exhibited high agonist potency at 5-HT2A and 5-HT2C receptors, modest selectivity over 5-HT2B, 5-HT1A, 5-HT6, and adrenergic α2A receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.1-3 mg/kg) elicited a head-twitch response (HTR) and could be administered subchronically at threshold doses without behavioral tolerance. CYB210010 was orally bioavailable in three species, readily and preferentially crossed into the CNS, engaged frontal cortex 5-HT2A receptors, and increased the expression of genes involved in neuroplasticity in the frontal cortex. CYB210010 represents a new tool molecule for investigating the therapeutic potential of 5-HT2 receptor activation. In addition, several other compounds with high 5-HT2A receptor potency, yet with little or no HTR activity, were discovered, providing the groundwork for the development of nonpsychedelic 5-HT2A receptor ligands.


Phenethylamines , Serotonin 5-HT2 Receptor Agonists , Structure-Activity Relationship , Animals , Humans , Phenethylamines/pharmacology , Phenethylamines/chemistry , Phenethylamines/chemical synthesis , Administration, Oral , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Male , Biological Availability , Rats , Mice , Rats, Sprague-Dawley , Drug Discovery , Receptors, Serotonin, 5-HT2/metabolism , Receptor, Serotonin, 5-HT2A/metabolism
4.
Neuropharmacology ; 252: 109949, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38636726

Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.


Adaptation, Psychological , Aggression , Amphetamines , Hallucinogens , Stress, Psychological , Animals , Male , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Hallucinogens/administration & dosage , Hallucinogens/pharmacology , Adaptation, Psychological/drug effects , Adaptation, Psychological/physiology , Mice , Aggression/drug effects , Aggression/physiology , Amphetamines/pharmacology , Amphetamines/administration & dosage , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/administration & dosage , Escape Reaction/drug effects , Coping Skills
5.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677331

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Mice, Inbred ICR , Nicotine , Reward , Serotonin 5-HT2 Receptor Agonists , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/drug therapy , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology , Mice , Dose-Response Relationship, Drug , Tobacco Use Disorder/drug therapy , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Anxiety/drug therapy , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage
6.
Article En | MEDLINE | ID: mdl-38301886

Psychedelic compounds, including psilocybin, LSD (lysergic acid diethylamide), DMT (N,N -dimethyltryptamine), and 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), all of which are serotonin 2A receptor agonists, are being investigated as potential treatments. This review aims to summarize the current clinical research on these 4 compounds and mescaline to guide future research. Their mechanism(s) of action, pharmacokinetics, pharmacodynamics, efficacy, and safety were reviewed. While evidence for therapeutic indications, with the exception of psilocybin for depression, is still relatively scarce, we noted no differences in psychedelic effects beyond effect duration. Therefore, it remains unclear whether different receptor profiles contribute to the therapeutic potential of these compounds. More research is needed to differentiate these compounds in order to inform which compounds might be best for different therapeutic uses.


Hallucinogens , Lysergic Acid Diethylamide , Psilocybin , Hallucinogens/pharmacokinetics , Hallucinogens/pharmacology , Humans , Psilocybin/pharmacokinetics , Psilocybin/pharmacology , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/pharmacokinetics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics
7.
ACS Chem Neurosci ; 15(3): 608-616, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38241462

The introduction of arylmethyl substituents on the amine nitrogen atom of phenethylamines and tryptamines often results in profound increases in their affinity and functional activity at 5-HT2 serotonin receptors. To probe the sensitivity of this effect to substantially larger N-substituents, ten derivatives of the well-characterized psychedelic phenethylamine 2C-B were prepared by appending different dibenzo[b,d]furylmethyl (DBFM) moieties to the basic nitrogen. The DBFM group attached to the amino group through its 1-, -2-, or 3-position decreased affinity and agonist activity at the 5-HT2A/2C receptors. Substitution through the 4-position usually favored affinity for all three 5-HT2 receptor subtypes with compound 5 exhibiting 10- and 40-fold higher affinities at the 5-HT2A and 5-HT2C receptors, respectively, but less than fourfold selectivity among the three receptor subtypes. Nevertheless, all were relatively weak partial 5-HT2AR agonists, mostly in the low micromolar range, but full or nearly full agonists at the 5-HT2C subtype as determined in a calcium mobilization assay. Molecular docking simulations suggested that the dibenzofuryl portion dives more deeply into the orthosteric binding site of the 5-HT2A than the 5-HT2C receptor, interacting with the Trp3366.48 toggle switch associated with its activation, while the phenylamine moiety lies close to the extracellular side of the receptor. In conclusion, a very bulky N-substituent on a phenethylamine 5-HT2 receptor agonist is tolerated and may increase affinity if its orientation is appropriate. However, the Gq protein-mediated potencies are generally low, with low efficacy (relative to 5-HT) at the 5-HT2A receptor, somewhat higher efficacy at the 5-HT2B subtype, and full or nearly full efficacy at the 5-HT2C subtype.


Hallucinogens , Serotonin , Serotonin 5-HT2 Receptor Agonists , Receptor, Serotonin, 5-HT2A , Molecular Docking Simulation , Phenethylamines , Nitrogen , Receptor, Serotonin, 5-HT2C
8.
CNS Neurol Disord Drug Targets ; 23(3): 278-283, 2024.
Article En | MEDLINE | ID: mdl-37005521

Lorcaserin is a 3-benzazepine that binds 5-HT2C serotonin receptors in the hypothalamus, where it mediates lack of hunger and/or satiety, and in the ventral tegmental area, the site of origin of the mesolimbic and mesocortical dopaminergic projections, which mediate pleasure and reward. The drug has been first developed for the treatment of obesity, where it has shown efficacy, and subsequently trialed to counter substance use (mostly cocaine, cannabis, opioids, and nicotine) and craving, but showed inconsistent effects. Since 2020, the US Food and Drug Administration obtained that the drug was voluntarily withdrawn from the US market on the grounds that its long-term use was found to be associated with a greater incidence of some types of cancer. Provided it can show to be free from cancerogenic effects, ongoing research suggests that lorcaserin may have therapeutic potential for a variety of disorders and conditions beyond obesity. Since 5-HT2C receptors are involved in many diversified physiological functions (mood, feeding, reproductive behavior, neuronal processes related to impulsiveness, and modulating reward-related mechanisms) this drug has the potential to treat different central nervous system conditions, such as depression and schizophrenia.


Serotonin 5-HT2 Receptor Agonists , Serotonin , Humans , Serotonin 5-HT2 Receptor Agonists/therapeutic use , Benzazepines/pharmacology , Benzazepines/therapeutic use , Obesity/drug therapy
9.
Neurosci Lett ; 820: 137597, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38110146

According to the opponent-process theory of drug addiction, the intake of an addictive substance initiates two processes: a rapid primary process that results in the drug's rewarding effects, and a slower opponent process that leads to the aversive motivational state of drug aftereffects. This aversive state is integral in the desire, pursuit, and maintenance of drug use, potentially leading to dependence and addiction. However, current observational and experimental evidence suggests that the administration of a 5-hydroxytryptamine receptors-type 2A (5-HT2A) agonist, while capable of inducing a positive mental state in humans, may not generate the behavioral patterns typically associated with drugs of abuse. In this study, we found that administering the 5-HT2A agonist 4-Acetoxy-N,N-dimethyltryptamine fumarate (4-AcO-DMT) did not result in place preference in male rats compared to control saline administration 24 h later, after the drug has been cleared from the organism. However, in a modified place preference test where only the acute motivational effects of the drug were evaluated (excluding withdrawal), 4-AcO-DMT was found to be rewarding. Furthermore, in another modified place preference test where only the motivational effects of drug withdrawal were evaluated (excluding the acute effects of drug administration), the 24-hour aftereffect of 5-HT2A agonist administration also resulted in a robust place preference. Therefore, while 4-AcO-DMT administration was able to induce place preference, its 24-hour aftereffect also produced a strong reward. In the counterbalanced test, this reward from the aftereffect effectively overshadowed its acute rewarding properties, which could potentially create a false impression that 4-AcO-DMT lacks motivational properties. This suggests that 5-HT2A agonist administration follows a different dynamic than that proposed by the opponent-process theory of motivation and implies that the administration of 5-HT2A agonists may lead to behavioral patterns less typical of drugs associated with addiction.


Hallucinogens , Substance-Related Disorders , Humans , Rats , Male , Animals , Hallucinogens/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , N,N-Dimethyltryptamine , Reward
10.
ACS Chem Neurosci ; 14(19): 3665-3673, 2023 10 04.
Article En | MEDLINE | ID: mdl-37721710

Orthogonal recreation of the signaling profile of a chemical synapse is a current challenge in neuroscience. This is due in part to the kinetics of synaptic signaling, where neurotransmitters are rapidly released and quickly cleared by active reuptake machinery. One strategy to produce a rapid rise in an orthogonally controlled signal is via photocaged compounds. In this work, photocaged compounds are employed to recreate both the rapid rise and equally rapid fall in activation at a chemical synapse. Specifically, a complementary pair of photocages based on BODIPY were conjugated to a 5-HT2C subtype-selective agonist, WAY-161503, and antagonist, N-desmethylclozapine, to generate "caged" versions of these drugs. These conjugates release the bioactive drug upon illumination with green light (agonist) or red light (antagonist). We report on the synthesis, characterization, and bioactivity testing of the conjugates against the 5-HT2C receptor. We then characterize the kinetics of photolysis quantitatively using HPLC and qualitatively in cell culture conditions stimulating live cells. The compounds are shown to be stable in the dark for 48 h at room temperature, yet photolyze rapidly when irradiated with visible light. In live cells expressing the 5-HT2C receptor, precise spatiotemporal control of the degree and length of calcium signaling is demonstrated. By loading both compounds in tandem and leveraging spectral multiplexing as a noninvasive method to control local small-molecule drug availability, we can reproducibly initiate and suppress intracellular calcium flux on a timescale not possible by traditional methods of drug dosing. These tools enable a greater spatiotemporal control of 5-HT2C modulation and will allow for more detailed studies of the receptors' signaling, interactions with other proteins, and native physiology.


Receptor, Serotonin, 5-HT2C , Serotonin , Serotonin/metabolism , Serotonin Receptor Agonists , Serotonin 5-HT2 Receptor Agonists/pharmacology
11.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Article En | MEDLINE | ID: mdl-37566000

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Alkaloids , Quinuclidines , Serotonin , Alkaloids/pharmacology , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Tropanes , Quinuclidines/chemistry , Quinuclidines/pharmacology
12.
ACS Chem Neurosci ; 14(15): 2727-2742, 2023 08 02.
Article En | MEDLINE | ID: mdl-37474114

Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of ß-arrestin2 (ßarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the ßarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).


Hallucinogens , Serotonin , Receptor, Serotonin, 5-HT2A , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/chemistry , Phenethylamines/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
13.
J Med Chem ; 66(13): 9057-9075, 2023 07 13.
Article En | MEDLINE | ID: mdl-37378639

There is concern for important adverse effects with use of second-generation antipsychotics in Parkinson's disease psychosis (PDP) and dementia-related psychosis. Pimavanserin is the only antipsychotic drug authorized for PDP and represents an inverse agonist of 5-HT2A receptors (5-HT2AR) lacking affinity for dopamine receptors. Therefore, the development of serotonin 5-HT2AR inverse agonists without dopaminergic activity represents a challenge for different neuropsychiatric disorders. Using ligand-based drug design, we discovered a novel structure of pimavanserin analogues (2, 3, and 4). In vitro competition receptor binding and functional G protein coupling assays demonstrated that compounds 2, 3, and 4 showed higher potency than pimavanserin as 5-HT2AR inverse agonists in the human brain cortex and recombinant cells. To assess the effect of molecular substituents for selectivity and inverse agonism at 5-HT2ARs, molecular docking and in silico predicted physicochemical parameters were performed. Docking studies were in agreement with in vitro screenings and the results resembled pimavanserin.


Antipsychotic Agents , Psychotic Disorders , Humans , Serotonin/therapeutic use , Drug Inverse Agonism , Molecular Docking Simulation , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists/pharmacology , Psychotic Disorders/drug therapy , Serotonin Receptor Agonists/therapeutic use , Urea/pharmacology , Antipsychotic Agents/therapeutic use
14.
Behav Brain Res ; 447: 114438, 2023 06 05.
Article En | MEDLINE | ID: mdl-37059187

Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5 mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5 mg/kg, whereas operant responding was reduced at 1 mg/kg. At a much lower dose range lorcaserin 0.05-0.2 mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by the fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.


Receptor, Serotonin, 5-HT2C , Serotonin , Animals , Male , Mice , Impulsive Behavior , Mice, Inbred C57BL , Reward , Serotonin/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
16.
Science ; 379(6633): 700-706, 2023 02 17.
Article En | MEDLINE | ID: mdl-36795823

Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.


Antidepressive Agents , Cerebral Cortex , Hallucinogens , Neuronal Plasticity , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Hallucinogens/pharmacology , Neuronal Plasticity/drug effects , Serotonin/pharmacology , Signal Transduction , Serotonin 5-HT2 Receptor Agonists/pharmacology , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Animals , Mice , Mice, Knockout , Antidepressive Agents/pharmacology
17.
J Med Chem ; 66(2): 1509-1521, 2023 01 26.
Article En | MEDLINE | ID: mdl-36621987

Toxicity is a major cause of attrition in the development of pharmaceuticals, and the off-target effects are a frequent contributor. The 5-HT2B receptor agonism is known to be responsible for a variety of safety concerns including valvular heart disease which was the cause for the withdrawal of several compounds from the market. An early detection of potential binding to this receptor is thus desirable. Herein, we present the identification of key amino acid residues in the active site of 5-HT2B by molecular dynamics simulations, the development of pharmacophore models and their performance on in-house data, and a structurally highly diverse subset of Enamine REAL labeled for 5-HT2B activity by a machine learning model. These models may be used as filters employed on screening compound sets for the early filtration of compounds with potential 5-HT2B off-target liabilities.


Pharmacophore , Serotonin , Molecular Dynamics Simulation , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Catalytic Domain , Receptor, Serotonin, 5-HT2B
18.
ACS Chem Neurosci ; 14(1): 119-135, 2023 01 04.
Article En | MEDLINE | ID: mdl-36521179

Ariadne is a non-hallucinogenic analog in the phenylalkylamine chemical class of psychedelics that is closely related to an established synthetic hallucinogen, 2,5-dimethoxy-4-methyl-amphetamine (DOM), differing only by one methylene group in the α-position to the amine. Ariadne has been tested in humans including clinical trials at Bristol-Myers Company that indicate a lack of hallucinogenic effects and remarkable therapeutic effects, such as rapid remission of psychotic symptoms in schizophrenics, relaxation in catatonics, complete remission of symptoms in Parkinson's disease (PD), and improved cognition in geriatric subjects. Despite these provocative clinical results, the compound has been abandoned as a drug candidate and its molecular pharmacology remained unknown. Here, we report a detailed examination of the in vitro and in vivo pharmacology of Ariadne and its analogs, and propose a molecular hypothesis for the lack of hallucinogenic effects and the therapeutic potential of this compound class. We also provide a summary of previous clinical and preclinical results to contextualize the molecular signaling data. Our results show that Ariadne is a serotonin 5-HT2 receptor agonist, exhibits modest selectivity over 5-HT1 receptors, has no relevant activity at 5-HT4,5,7 and other aminergic receptors, and no substantial affinity at plasma membrane monoamine transporters. Compared to DOM, Ariadne shows lower signaling potency and efficacy in multiple signaling pathways examined (Gq, G11, and ß-arrestin2) coupled to 5-HT2A receptors. We confirmed the shift in signaling for an α-propyl analog and provide a molecular docking rationale for the progressive decrease in signaling potency with the growing length of the α-substituent. Ariadne versus DOM exhibits no apparent change in the relative preference between Gq/11 activation and ß-arrestin2 recruitment; instead, there is a small but consistent drop in efficacy in these signaling channels. Ariadne acts as a 5-HT2A agonist in vivo in mice and shows markedly attenuated head twitch response (HTR) in comparison to its hallucinogenic analogs, consistent with previous studies in rabbits, cats, and dogs. Hence, we propose the lower 5-HT2A receptor signaling efficacy of this compound class as an explanatory model for the lack of hallucinogenic effects of Ariadne in humans and the dramatically attenuated hallucinosis-like effects in animals (5-HT2A signaling efficacy hypothesis). In terms of reverse translation of the noted clinical therapeutic effects, we used an auxilin knockout model of Parkinson's disease where Ariadne rescued severe motor deficits in this mouse line, on par with the effects of l-DOPA, a notable finding considering Ariadne's lack of activity at dopamine receptors and transporters. Ariadne emerges as a prototype of a new drug class, non-hallucinogenic 5-HT2A agonists, with considerable therapeutic potential across psychiatric and neurological indications.


Hallucinogens , Parkinson Disease , Humans , Mice , Animals , Rabbits , Dogs , Aged , Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/chemistry , Serotonin Receptor Agonists/pharmacology , Receptor, Serotonin, 5-HT2A
19.
Neuropharmacology ; 222: 109294, 2023 01 01.
Article En | MEDLINE | ID: mdl-36252614

INTRODUCTION: Mescaline (3,4,5-trimethoxyphenethylamine) is one of the oldest hallucinogens, with evidence of use dating back 5700 years. Mescaline is a naturally occurring alkaloid found in cacti, mainly in the peyote cactus (Lophophora williamsii) and in the cacti of the Echinopsis genus. Since the prohibition of psychoactive substances in the early 70s, research on mescaline and other classical psychedelics has been limited. OBJECTIVES: This article aims to review the pharmacology and behavioural effects of mescaline, focusing on preclinical and clinical research. FINDINGS: Mescaline is a serotonin 5HT2A/2C receptor agonist, with its main hallucinogenic effects being mediated via its 5HT2A receptor agonist action. It also exerts effects via agonist binding at α1A/2A noradrenaline and D1/2/3 dopamine receptors. Overall, mescaline has anxiolytic-like effects in animals and increases prosocial behaviour, locomotion, and response reactivity. In humans, mescaline can induce euphoria, hallucinations, improvements in well-being and mental health conditions, and psychotomimetic effects in a naturalistic or religious setting. CONCLUSION: The pharmacological mechanisms of mescaline are similar to those of other classical psychedelics, like psilocybin and lysergic acid diethylamide (LSD). Mescaline appears to be safe to consume, with most intoxications being mild and easily treatable. Improvement in mental well-being and its ability to overcome alcoholism render mescaline potentially beneficial in clinical settings. This article is part of the Special Issue on 'Psilocybin Research'.


Hallucinogens , Mescaline , Animals , Humans , Mescaline/pharmacology , Hallucinogens/pharmacology , Psilocybin/pharmacology , Lysergic Acid Diethylamide/pharmacology , Serotonin 5-HT2 Receptor Agonists , Memory Disorders
20.
Behav Brain Res ; 437: 114127, 2023 02 02.
Article En | MEDLINE | ID: mdl-36174843

The 5-hydroxytryptamine 2A (5-HT2A) receptor plays an important role in schizophrenia. The 5-HT2A receptor is also involved in the regulation of prepulse inhibition (PPI) in rodents. The aim of this study was to determine whether selective 5-HT2A receptor agonizts or antagonists may alter PPI in rats and to identify the critical brain regions in which the activity of 5-HT2A receptors regulates PPI. The results showed that infusion of the 5-HT2A receptor agonist TCB-2 into the lateral ventricle disrupted PPI, but the 5-HT2A receptor antagonist M100907 had no such effect. In addition, local infusion of TCB-2 into the nucleus accumbens and ventral pallidum disrupted PPI, whereas the same manipulation in the medial prefrontal cortex, ventral hippocampus, and ventral tegmental area did not disrupt PPI. In conclusion, agonism of 5-HT2A receptors in the ventral pallidum and nucleus accumbens can disrupt PPI. The ventral pallidum and nucleus accumbens are critical brain regions responsible for the regulation of PPI by serotonin. These findings contribute to the extensive exploration of the molecular and neural mechanisms underlying the regulatory effect of 5-HT2A receptor activity on PPI, especially the neural circuits modulated by 5-HT2A receptor activity.


Basal Forebrain , Nucleus Accumbens , Prepulse Inhibition , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Animals , Rats , Basal Forebrain/drug effects , Basal Forebrain/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Prepulse Inhibition/drug effects , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/pharmacology
...